University of Zagreb. Faculty of Science. Department of Mathematics.
Abstract
Središnja tema ovog rada je izračunavanje umnoška dn duljina tetiva elipse dobivene skaliranjem kružnice na kojoj je odabrano n ekvidistantnih točaka. Motivacija za ovaj problem proizlazi iz odgovarajućeg rezultata za jediničnu kružnicu gdje vrijedi dn=n. Th. E. Price izveo je poopćenje tog teorema proučavanjem stanovite familije polinoma Pn(z). Ti polinomi karakterizirani su rekurzijom koja ih dovodi u vezu s poopćenim Lucasovim i Fibonaccijevim polinomima. Za prikladni izbor parametara koji određuju promatranu elipsu dobiva se Pn(1)=Ln i Pn′(1)=dn=nFn, pri čemu su Ln i Fnn-ti Lucasov, odnosno Fibonaccijev broj. U završnom poglavlju izložen je alternativni pristup Priceovom radu, prema nedavno objavljenom članku B. Blum - Smitha i J. Wooda (2018.). Veći dio Priceovih rezultata izveden je i protumačen na novi način, polazeći od klasičnog Cardanovog rješenja kubne jednadžbe.The main topic of this thesis is computation of the product dn of chord lengths for the ellipse obtained by scaling a circle on which n equidistant points were chosen. The motivation for this problem originates from the corresponding result for the unit circle, namely dn=n. Th. E. Price derived a generalization of that result by exploring a certain family of polynomials Pn(z). These polynomials are characterized by a recursion which brings them into a relation with generalized Lucas and Fibonacci polynomials. For an appropriate choice of parameters that describe the observed ellipse, one obtains Pn(1)=Ln and Pn′(1)=dn=nFn, where Ln and Fn are the Lucas and Fibonacci numbers, respectively. In the final chapter an alternative approach to Price’s work is laid out, according to a recent paper by B. Blum-Smith and J. Wood (2018.). The main part of Price’s results is derived and explained in a new fashion, starting with the classical Cardano’s solution of the cubic equation