We study the Cauchy problem for the Korteweg-de Vries (KdV) hierarchy in the
small dispersion limit where \e\to 0. For negative analytic initial data with
a single negative hump, we prove that for small times, the solution is
approximated by the solution to the hyperbolic transport equation which
corresponds to \e=0. Near the time of gradient catastrophe for the transport
equation, we show that the solution to the KdV hierarchy is approximated by a
particular Painlev\'e transcendent. This supports Dubrovins universality
conjecture concerning the critical behavior of Hamiltonian perturbations of
hyperbolic equations. We use the Riemann-Hilbert approach to prove our results