The gas transport through non-volatile random porous media is investigated
numerically. We extend our previous research of the transport of molecules
inside the uppermost layer of a cometary surface (Skorov and Rickmann, 1995;
Skorov et al. 2001). We assess the validity of the simplified capillary model
and its assumptions to simulate the gas flux trough the porous dust mantle as
it has been applied in cometary physics. A new microphysical computational
model for molecular transport in random porous media formed by packed spheres
is presented. The main transport characteristics such as the mean free path
distribution and the permeability are calculated for a wide range of model
parameters and compared with those obtained by more idealized models. The focus
in this comparison is on limitations inherent in the capillary model. Finally a
practical way is suggested to adjust the algebraic Clausing formula taking into
consideration the nonlinear dependence of permeability on layer porosity. The
retrieved dependence allows us to accurately calculate the permeability of
layers whose thickness and porosity vary in the range of values expected for
the near-surface regions of a cometary nucleus.Comment: 25 pages, 9 figure