research

Theory of Secular Chaos and Mercury's Orbit

Abstract

We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, because these often dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple massive planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities can shift the frequencies into and out of secular resonance with the planets' eigenfrequencies, or with linear combinations of those frequencies. The overlap of these nonlinear secular resonances drive secular chaos in planetary systems. We quantify the resulting dynamics for the first time by calculating the locations and widths of nonlinear secular resonances. When results from both analytical calculations and numerical integrations are displayed together in a newly developed "map of the mean momenta" (MMM), the agreement is excellent. This map is particularly revealing for non-coplanar planetary systems and demonstrates graphically that chaos emerges from overlapping secular resonances. We then apply this newfound understanding to Mercury. Previous numerical simulations have established that Mercury's orbit is chaotic, and that Mercury might even collide with Venus or the Sun. We show that Mercury's chaos is primarily caused by the overlap between resonances that are combinations of four modes, the Jupiter-dominated eccentricity mode, the Venus-dominated inclination mode and Mercury's free eccentricity and inclination. Numerical integration of the Solar system confirms that a slew of these resonant angles alternately librate and circulate. We are able to calculate the threshold for Mercury to become chaotic: Jupiter and Venus must have eccentricity and inclination of a few percent. Mercury appears to be perched on the threshold for chaos.Comment: 18 pages, submitted to Ap

    Similar works