research

Quantum Criticality and the Kondo Lattice

Abstract

Quantum phase transitions (QPTs) arise as a result of competing interactions in a quantum many-body system. Kondo lattice models, containing a lattice of localized magnetic moments and a band of conduction electrons, naturally feature such competing interactions. A Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction among the local moments promotes magnetic ordering. However, a Kondo exchange interaction between the local moments and conduction electrons favors the Kondo-screened singlet ground state. This chapter summarizes the basic physics of QPTs in antiferromagnetic Kondo lattice systems. Two types of quantum critical points (QCPs) are considered. Spin-density-wave quantum criticality occurs at a conventional type of QCP, which invokes only the fluctuations of the antiferromagnetic order parameter. Local quantum criticality describes a new type of QCP, which goes beyond the Landau paradigm and involves a breakdown of the Kondo effect. This critical Kondo breakdown effect leads to non-Fermi liquid electronic excitations, which are part of the critical excitation spectrum and are in addition to the fluctuations of the magnetic order parameter. Across such a QCP, there is a sudden collapse of the Fermi surface from large to small. I close with a brief summary of relevant experiments, and outline a number of outstanding issues, including the global phase diagram.Comment: 27 pages, 6 figures; Chapter of the book "Understanding Quantum Phase Transitions", ed. Lincoln D. Carr (CRC Press/Taylor & Francis, Boca Raton, 2010

    Similar works

    Full text

    thumbnail-image

    Available Versions