A portada: Institut de Biotecnologia i de BiomedicinaEls riscos biològics associats a la teràpia gènica viral limiten el ple desenvolupament de vectors virals i plantegen importants problemes a la seva incorporació en assajos clínics. La teràpia gènica no viral representa una alternativa segura als virus naturals per al lliurament dirigida de gens a cèl·lules, tot i els baixos nivells d'expressió gènica obtinguts que és l'obstacle principal per la seva aplicació terapèutica. Els diferents tipus de vectors no virals que s'han desenvolupat fins ara, inclouen els basats en liposomes, dendrímers o proteïnes. Recentment, el concepte de "virus artificial" s'ha proposat per descriure nanocomplexes per al lliurament de gens que imiten les funcions virals pertinents per a la captació del gen i el tràfic intracel·lular. Entre ells, els basats en proteïnes i construïts a través de principis modulars permeten la incorporació, en un únic polipèptid, de diferents proteïnes o dominis de proteïnes amb funcions similars a virus, és a dir, la unió i la condensació a ADN, la unió al receptor, la internalització, l'escapament endosomal, la localització nuclear i l'alliberament del material transportat. Hem desenvolupat una sèrie de vehicles proteics modulars formades per diferents dominis funcionals que són capaços d'entrar en les cèl·lules a través de la unió un receptor específic i promoure nivells importants de l'expressió gènica. En aquesta tesi s'analitza aquest enfocament amb dos articles de revisió i es demostra amb tres treballs originals.The biological risks associated to viral gene therapy limit the full development of viral vectors and pose major concerns to their incorporation into clinical trials. Non-viral gene therapy represents a safe alternative to natural viruses for cell targeted gene delivery, although the low gene expression levels achieved by non-viral vectors are a main obstacle for their therapeutic application. Different types of non-viral vectors have been developed up to date, including those based in liposomes, dendrimers or proteins. Recently, the 'Artificial virus' concept has been proposed to describe nanocomplexes for gene delivery that mimic the viral functions relevant to gene uptake and intracellular trafficking. Among them, those based on proteins and constructed through modular principles allow the incorporation, in a single polypeptide, of different proteins or protein domains with virus-like functions, namely DNA binding and condensation, receptor binding, internalization, endosomal escape, nuclear targeting and uncoating. We have developed a series of protein-only modular vehicles composed by different functional domains that are able to enter cells through specific receptor binding and promotes important levels of transgene expression. In this thesis this approach is discussed with two review articles and demonstrated with three original papers