The problem of genealogy of permutations has been solved partially by Stefan
(odd order) and Acosta-Hum\'anez & Bernhardt (power of two). It is well known
that Sharkovskii's theorem shows the relationship between the cardinal of the
set of periodic points of a continuous map, but simple permutations will show
the behavior of those periodic points. This paper studies the structure of
permutations of mixed order 4n+2, its properties and a way to describe its
genealogy by using Pasting and Reversing.Comment: 17 page