thesis

Allocation et réallocation de services pour les économies d'énergie dans les clusters et les clouds

Abstract

L'informatique dans les nuages (cloud computing) est devenu durant les dernières années un paradigme dominant dans le paysage informatique. Son principe est de fournir des services décentralisés à la demande. La demande croissante pour ce type de service amène les fournisseurs de clouds à augmenter la taille de leurs infrastructures à tel point que les consommations d'énergie ainsi que les coûts associés deviennent très importants. Chaque fournisseur de service cloud doit répondre à des demandes différentes. C'est pourquoi au cours de cette thèse, nous nous sommes intéressés à la gestion des ressources efficace en énergie dans les clouds. Nous avons tout d'abord modélisé et étudié le problème de l'allocation de ressources initiale en fonction des services, en calculant des solutions approchées via des heuristiques, puis en les comparant à la solution optimale. Nous avons ensuite étendu notre modèle de ressources pour nous permettre d'avoir une solution plus globale, en y intégrant de l'hétérogénéité entre les machines et des infrastructures de refroidissement. Nous avons enfin validé notre modèle par simulation. Les services doivent faire face à différentes phases de charge, ainsi qu'à des pics d'utilisation. C'est pourquoi, nous avons étendu le modèle d'allocation de ressources pour y intégrer la dynamicité des requêtes et de l'utilisation des ressources. Nous avons mis en œuvre une infrastructure de cloud simulée, visant à contrôler l'exécution des différents services ainsi que le placement de ceux-ci. Ainsi notre approche permet de réduire la consommation d'énergie globale de l'infrastructure, ainsi que de limiter autant que possible les dégradations de performance.Cloud computing has become over the last years an important paradigm in the computing landscape. Its principle is to provide decentralized services and allows client to consume resources on a pay-as-you-go model. The increasing need for this type of service brings the service providers to increase the size of their infrastructures, to the extent that energy consumptions as well as operating costs are becoming important. Each cloud service provider has to provide for different types of requests. Infrastructure manager then have to host all the types of services together. That's why during this thesis, we tackled energy efficient resource management in the clouds. In order to do so, we first modeled and studied the initial service allocation problem, by computing approximated solutions given by heuristics, then comparing it to the optimal solution computed with a linear program solver. We then extended the model of resources to allow us to have a more global approach, by integrating the inherent heterogeneity of clusters and the cooling infrastructures. We then validated our model via simulation. Usually, the services must face different stages of workload, as well as utilization spikes. That's why we extended the model to include dynamicity of requests and resource usage, as well as the concept of powering on or off servers, or the cost of migrating a service from one host to another. We implemented a simulated cloud infrastructure, aiming at controlling the execution of the services as well as their placement. Thus, our approach enables the reduction of the global energy consumption of the infrastructure, and limits as much as possible degrading the performances

    Similar works