Large fluctuations have received considerable attention as they encode
information on the fine-scale dynamics. Large deviation relations known as
fluctuation theorems also capture crucial nonequilibrium thermodynamical
properties. Here we report that, using the technique of uniformization, the
thermodynamic large deviation functions of continuous-time Markov processes can
be obtained from Markov chains evolving in discrete time. This formulation
offers new theoretical and numerical approaches to explore large deviation
properties. In particular, the time evolution of autonomous and non-autonomous
processes can be expressed in terms of a single Poisson rate. In this way the
uniformization procedure leads to a simple and efficient way to simulate
stochastic trajectories that reproduce the exact fluxes statistics. We
illustrate the formalism for the current fluctuations in a stochastic pump
model