CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Comparative analysis of cytosolic and mitochondrial ATP synthesis in embryonic and postnatal hippocampal neuronal cultures
Authors
Alexander M Surin
Alexander M Surin
+5 more
Boris I Khodorov
Leonard eKhiroug
Lubov R Gorbacheva
Serguei eKhiroug
Vsevolod G Pinelis
Publication date
1 January 2013
Publisher
Doi
Cite
View
on
PubMed
Abstract
ATP in neurons is commonly believed to be synthesized mostly by mitochondria via oxidative phosphorylation. Neuronal mitochondria have been studied primarily in culture, i.e., in neurons isolated either from embryos or from neonatal pups. Although it is generally assumed that both embryonic and postnatal cultured neurons derive their ATP from mitochondrial oxidative phosphorylation, this has never been tested experimentally. We expressed the FRET-based ATP sensor AT1.03 in cultured hippocampal neurons isolated either from E17 to E18 rat embryos or from P1 to P2 rat pups and monitored [ATP]c simultaneously with mitochondrial membrane potential ΔΨm; TMRM) and NAD(P)H autofluorescence. In embryonic neurons, transient glucose deprivation induced a near-complete decrease in [ATP]c, which was partially reversible and was accelerated by inhibition of glycolysis with 2-deoxyglucose. In the absence of glucose, pyruvate did not cause any significant increase in [ATP]c in 84% of embryonic neurons, and inhibition of mitochondrial ATP synthase with oligomycin failed to decrease [ATP]c. Moreover, ΔΨm was significantly reduced by oligomycin, indicating that mitochondria acted as consumers rather than producers of ATP in embryonic neurons. In sharp contrast, in postnatal neurons pyruvate added during glucose deprivation significantly increased [ATP]c (by 54 ± 8%), whereas oligomycin induced a sharp decline in [ATP]c and increased ΔΨm. These signs of oxidative phosphorylation were observed in all tested P1-P2 neurons. Measurement of ΔΨm with the potential-sensitive probe JC-1 revealed that neuronal mitochondrial membrane potential was significantly reduced in embryonic cultures compared to the postnatal ones, possibly due to increased proton permeability of inner mitochondrial membrane. We conclude that, in embryonic, but not postnatal neuronal cultures, ATP synthesis is predominantly glycolytic and the oxidative phosphorylation-mediated synthesis of ATP by mitochondrial F1Fo-ATPase is insignificant. © 2013 Surin, Khiroug, Gorbacheva, Khodorov, Pinelis and Khiroug.Peer reviewe
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.3389%2Ffnmol.2012....
Last time updated on 01/04/2019
Frontiers - Publisher Connector
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 05/06/2019
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:aed3b180f...
Last time updated on 17/12/2014
Frontiers - Publisher Connector
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 15/05/2017
Helsingin yliopiston digitaalinen arkisto
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:helda.helsinki.fi:10138/42...
Last time updated on 24/02/2014