We demonstrate that an attempt to measure a non-local in time quantity, such
as the time average \la A\ra_T of a dynamical variable A, by separating
Feynman paths into ever narrower exclusive classes traps the system in
eigensubspaces of the corresponding operator \a. Conversely, in a long
measurement of \la A\ra_T to a finite accuracy, the system explores its
Hilbert space and is driven to a universal steady state in which von Neumann
ensemble average of \a coincides with \la A\ra_T. Both effects are
conveniently analysed in terms of singularities and critical points of the
corresponding amplitude distribution and the Zeno-like behaviour is shown to be
a consequence of conservation of probability