Anaerobic treatment and resource recovery from methanol rich waste gases and wastewaters

Abstract

Metanoli on tärkeä haihtuva orgaaninen yhdiste, jota on sekä kaasumaisissa että nestemäisissä sivu- ja jätevirroissa, joita tuotetaan prosessiteollisuudessa kuten massa- ja paperiteollisuudessa, maaliteollisuudessa sekä öljynjalostuksessa. Vuonna 2017 ilmakehään pääsi pelkästään Yhdysvalloissa noin 55377 tonnia metanolia, josta vähintään 65% oli peräisin sellu- ja paperiteollisuuden sulfaattiprosessista. Tässä tutkimuksessa metanolia sisältäviä kaasumaisia ja nestemäisiä virtoja käsiteltiin biologisesti anaerobisissa bioreaktoreissa, kuten suodinreaktorissa (BTF) ja lietepatjareaktorissa (UASB). Näissä bioreaktoreissa metanolista tuotetut haihtuvat rasvahapot määritettiin kvantitatiivisesti ja reaktoreiden massatasapainot selvitettiin. Metanolia poistettiin kaasufaasista pelkistämällä samalla tiosulfaattia (~ 1000 mg/L) anaerobisessa biosuotimessa, jota ajettiin 123 päivää. Kokeissa saavutettiin metanolin maksimipoistotehokkuudeksi 21 g/m3.h, kun taas tiosulfaatti poistettiin täydellisesti. Kaasufaasin metanolin poiston yhdistämistä selenaatin pelkistykseen tutkittiin toisessa anaerobisessa biosuotimessa 89 päivää syöttämällä metanolia ja selenaattia reaktoriin joko panos- tai jatkuvatoimisesti. Selenaatin poistotehokkuus oli > 90% panostoimisessa ja noin 68% jatkuvatoimisessa syötössä. Metanolin maksimipoistotehokkuus oli 46 g/m3.h. Metanolin poistoa yhdistettynä selenaatin pelkistykseen tutkittiin edelleen panostoimisessa anaerobisessa biosuotimessa, johon rikastettiin mikrobiyhteistö merisedimentistä. Reaktoria operoitiin 348 päivää, jonka aikana saavutettiin täydellinen selenaatin pelkistys jopa 140 mg/L selenaatin konsentraatiolla. Reaktorikokeiden lisäksi selenaatin, sulfaatin ja tiosulfaatin eri konsentraatioiden vaikutuksia haihtuvien rasvahappojen tuottoon metanolista tutkittiin panossysteemeissä. Sellutehtaan nestemäistä metanolia sisältävää lauhdetta käsiteltiin kolmessa lietepatjareaktorissa, joita operoitiin 22, 37 ja 55 °C:ssa 51 päivää. Maksimi metanolinpoistotehokkuus oli 45% 55°C:ssa operoidussa reaktorissa ja lähes 100% etanolin ja asetonin poisto saavutettiin kaikissa UASB-reaktoreissa. Ennen lauhteen käsittelyä UASBreaktorissa, reaktoria operoitiin 113 päivää synteettisellä metanolia sisältävällä jätevedellä olosuhteissa, jotka edesauttavat metanolin asetogeneesiä haihtuviksi rasvahapoiksi. Haihtuvien rasvahappojen talteenottoa anioninvaihtoadsorbenteilla tutkittiin panoskokeissa. Yksittäisten haihtuvien rasvahappojen adsorptiokapasiteettia tutkittiin Amberlite IRA-67 ja Dowex optipore L-493 adsorbenteilla sovittamalla kokeelliset tulokset adsorptio-isotermiin ja kineettisiin malleihin. Lopuksi testattiin asetaatin selektiivistä erottamista haihtuvia rasvahappoja sisältävästä liuosfaasista peräkkäisellä panosprosessilla.Methanol is an important volatile organic compound (VOC) present in the gaseous and liquid effluents of process industries such as pulp and paper, paint manufacturing and petroleum refineries. An estimated 55,377 tonnes of methanol was emitted to the atmosphere in the year 2017 in the United States alone and at least 65% of the total emission was from the Kraft mills of the pulp and paper industries. The anaerobic biological treatment of methanol-rich gaseous and liquid effluents was tested in two bioreactor configurations, namely a biotrickling filter (BTF) and an upflow anaerobic sludge blanket (UASB) reactor. The volatile fatty acids (VFA) produced in these bioreactors were quantified and a mass balance analysis was carried out. Gas-phase methanol removal along with thiosulfate (~ 1000 mg/L) reduction was carried out for 123 d in an anoxic BTF. A maximum elimination capacity (ECmax) of 21 g/m3.h for methanol and complete removal of thiosulfate was achieved. To examine the gas-phase methanol removal along with selenate reduction, another anoxic BTF was operated for 89 d under step and continuous selenate feeding, wherein the selenate removal efficiency was > 90% and ~ 68%, respectively, during step and continuous selenate feed and a methanol ECmax of 46 g/m3.h was achieved. The anaerobic bioreduction of selenate coupled to methane oxidation was investigated in batch reactors and a BTF inoculated with marine sediment and operated for a period of 348 d. Complete reduction of up to 140 mg/L of step fed selenate was achieved in the BTF. Furthermore, the effect of selenate, sulfate and thiosulfate on methanol utilization for VFA production was individually examined in batch systems. For the study on liquid-phase methanol, acetogenesis of foul condensate (FC) obtained from a chemical pulping industry was tested in three UASB reactors operated at 22, 37 and 55 ºC for 51 d. A maximum methanol removal efficiency of 45% in the 55 ºC reactor and nearly complete removal of ethanol and acetone in all UASB reactors was achieved. Prior to acetogenesis of the FC, the UASB reactors were operated for a period of 113 d under conditions reported to induce acetogenesis of methanol-rich synthetic wastewater. The recovery of VFA was explored through adsorption studies using anion exchange resins in batch systems. The trends and capacity of adsorption of individual VFA on Amberlite IRA-67 and Dowex optipore L-493 were examined by fitting the experimental data to adsorption isotherm and kinetic models. Subsequently, a sequential batch process was tested to achieve selective separation of acetate from the VFA mixture

    Similar works