Measurement of flow properties of pulp suspension

Abstract

Tämän työn tarkoituksena oli mittaamalla selvittää vesikuitususpension virtausominaisuuksia. Mittauksista saatujen tulosten perusteella pyrittiin määrittämään epänewtoniselle vesikuitususpensiolle materiaalimalli, joka kuvaa sen käyttäytymistä eri virtaustilanteissa. Mittauksissa käytettiin kemiallisesti valkaistuja koivukuituja. Teoriaosuudessa perehdytään epänewtonisten aineiden teoriaan ja esitellään materiaalimalleja. Vesikuitususpension tärkeimpien ominaisuuksien selvittämiseksi tehtiin katsaus alan kirjallisuuteen ja viimeisimpiin tutkimuksiin. Mittalaitteiston suunnittelussa ja rakentamisessa hyödynnettiin alalla viime aikoina tehtyjä kokeellisia tutkimuksia. Mittalaitteistona käytettiin rotaatioreometriä, jossa pyöritettiin nelisiipistä lapasysteemiä sylinterinmuotoisessa säiliössä. Lapasysteemit valmistettiin 3D-tulostimella. Staattista rajajännitystä mitattiin kahdella menetelmällä ja dynaamista rajajännitystä yhdellä menetelmällä. Fluidisaation mittaukseen käytettiin PUDV-tekniikkaa, jolla saatiin selville vesikuitususpension nopeusprofiili. Vesikuitususpension tärkein ominaisuus, staattinen rajajännitys, määritettiin hyvin molemmilla menetelmillä. Menetelmien tulokset olivat hyvin lähellä toisiaan ja mittausten toistettavuus oli hyvä. Arvot vastasivat kirjallisuudessa esitettyjä. Dynaaminen rajajännitys havaittiin aikariippuvaiseksi. Pidempi sekoitusaika laski dynaamisen rajajännityksen arvoa. Alhaisilla pyörimisnopeuksilla rajajännitys hallitsi virtausta ja suurilla pyörimisnopeuksilla turbulenssi hallitsi tilannetta, jolloin suspension konsentraatioerojen vaikutus väheni. PUDV-mittauksissa oli monta virhelähdettä, jotka toivat epätarkkuutta tuloksiin. Mitattujen nopeusprofiilien avulla saatiin selvitettyä fluidisoituneen alueen koko. Nopeusprofiileihin sovitettiin materiaalimallia, jotta saatiin selville materiaalimallin parametrit. Sovitteista saatuja materiaalimallin parametreja käytettiin virtaussimuloinnissa (CFD), joka tehtiin ANSYS CFX-ohjelmistolla. Simuloituja tuloksia verrattiin mittaustuloksiin. CFD-laskenta ennusti fluidisoituneen alueen koon, paikallisen nopeuden ja momentin suuremmiksi kuin mittauksissa. Työssä onnistuttiin selvittämään luotettavasti vesikuitususpension rajajännitys. Mittausten perusteella koivulle ehdotetaan käytettäväksi Herschel-Bulkley-mallia sovitteista saaduilla parametreilla. Jatkotutkimuksen kohteena voisi olla erilaisten kuitutyyppien rajajännitykset. PUDV-mittajärjestelyä pitäisi kehittää, jotta saataisiin tarkempia mittatuloksia. Laadullisesti CFD-laskenta antoi kuitenkin järkeviä tuloksia. Tarkemmilla nopeusprofiileilla saataisiin parempi materiaalimalli, jota voitaisiin hyödyntää prosessilaitteiden virtaussimuloinnissa

    Similar works