Advanced Multicarrier Communication Techniques in Automotive Environment

Abstract

Electronic systems in vehicles are used for advanced infotainment systems, control and automation systems, and safety critical systems. Due to increased importance of electronics in the modernization of vehicles, the size of cable harness is continuously increasing. Besides the DC wires a new cable needs to be wired for the addition of each feature in automotive environment. In addition to increased cost, the increased weight due to cabling also increases fuel consumption. Powerline communication (PLC) exploits AC or DC powerlines without need of additional wires. Successful PLC implementation for in-vehicle environment will ease the cable burden. Using DC power supply wires as the transmission medium will enhance the vehicular efficiency. For vehicular PLC implementation, the major issue to be addressed is that the effects of interference in the vehicular environment in general, and electric cars in particular, are strong enough to seriously impair the communication link performance. Besides interference, the frequency selectivity of the transmission channel also plays a critical role. Therefore, particularly robust modulation and signal processing techniques need to be developed for this scenario. To overcome these issues, a robust multicarrier modulation scheme is proposed in this thesis for automotive environments. The main components of this scheme include Orthogonal Frequency Division Multiplexing (OFDM) with low-order modulation and repetition coding. Furthermore, the Polynomial Cancellation Coding (PCC) method is adopted for suppressing the side-lobes in OFDM processing and effectively suppressing narrowband interferences

    Similar works