Simultaneous 2D and 3D Video Rendering

Abstract

The representation of stereoscopic video on a display is typically enabled either by using active shutter or polarizing viewing glasses in the television sets and displays available for end users. It is likely that in some usage situations some viewers do not wear viewing glasses at all times and hence it would be desirable if the stereoscopic video content could be tuned in the rendering device in such a manner that it could be simultaneously watched with and without viewing glasses with an acceptable quality. In this thesis, a novel video rendering technique is proposed and implemented in the post-processing stage which enables good quality both stereoscopic and traditional 2D video perception of the same content. This has been accomplished by manipulating of one view in the stereoscopic video by making it more similar to the other view in order to reduce the ghosting artifact perceived when the content is watched without viewing glasses while stereoscopic perception is maintained. The proposed technique includes three steps: disparity selection, contrast adjustment, and low-pass-filtering. Through an extensive series of subjective tests, the proposed approach has been evaluated to show that stereoscopic content can be viewed without glasses with an acceptable quality. The proposed methods resulted in a lower bitrate stereoscopic video stream requiring a smaller bandwidth for broadcasting

    Similar works