Application of aging methods to estimate long term performance of secondary materials for road construction

Abstract

Long term performance of secondary materials is becoming a challenging aspect in road construction since due to their benefits they are being used on a large scale, but on the other hand their future behaviors are difficult to estimate. In this study, aging is proposed as a means of exploring the long-term mechanical and physical performance of secondary materials. A Blast Furnace Slag (BFS) mixture which is routinely used in the Netherlands in road (sub-) base construction was selected as a reference material. The A32 motorway in the Netherlands was used as a source of field aged granulated BFS materials. The base layer of this motorway, suddenly experienced serious failure. Different failure mechanisms have been hypothesized. In order to estimate future behavior of secondary materials and to prevent similar problems to occur an aging protocol was suggested to detect at an early stage potential poor material performance. Two types of aging approaches were chosen and applied to the field aged and fresh materials being steam aging and cyclic freezing and thawing. Both aging treatments have affected mechanical and chemical characteristics. The study of response variables showed there is a linkage between compressive strength, expansion, micro cracking and amount and type of binder.Structural EngineeringCivil Engineering and Geoscience

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 09/03/2017