We evaluate the performances of ab initio GW calculations for the ionization
energies and HOMO-LUMO gaps of thirteen gas phase molecules of interest for
organic electronic and photovoltaic applications, including the C60 fullerene,
pentacene, free-base porphyrins and phtalocyanine, PTCDA, and standard monomers
such as thiophene, fluorene, benzothiazole or thiadiazole. Standard G0W0
calculations, that is starting from eigenstates obtained with local or
semilocal functionals, significantly improve the ionization energy and band gap
as compared to density functional theory Kohn-Sham results, but the calculated
quasiparticle values remain too small as a result of overscreening. Starting
from Hartree-Fock-like eigenvalues provides much better results and is
equivalent to performing self-consistency on the eigenvalues, with a resulting
accuracy of 2~4% as compared to experiment. Our calculations are based on an
efficient gaussian-basis implementation of GW with explicit treatment of the
dynamical screening through contour deformation techniques.Comment: 10 pages, 3 figure