research

Elementary Quantum Mechanics in a Space-time Lattice

Abstract

Studies of quantum fields and gravity suggest the existence of a minimal length, such as Planck length \cite{Floratos,Kempf}. It is natural to ask how the existence of a minimal length may modify the results in elementary quantum mechanics (QM) problems familiar to us \cite{Gasiorowicz}. In this paper we address a simple problem from elementary non-relativistic quantum mechanics, called "particle in a box", where the usual continuum (1+1)-space-time is supplanted by a space-time lattice. Our lattice consists of a grid of λ0×τ0\lambda_0 \times \tau_0 rectangles, where λ0\lambda_0, the lattice parameter, is a fundamental length (say Planck length) and, we take τ0\tau_0 to be equal to λ0/c\lambda_0/c. The corresponding Schrodinger equation becomes a difference equation, the solution of which yields the qq-eigenfunctions and qq-eigenvalues of the energy operator as a function of λ0\lambda_0 . The qq-eigenfunctions form an orthonormal set and both qq-eigenfunctions and qq-eigenvalues reduce to continuum solutions as λ0→0. \lambda_0 \rightarrow 0 . The corrections to eigenvalues because of the assumed lattice is shown to be O(λ02).O(\lambda_0^2). We then compute the uncertainties in position and momentum, Δx,Δp\Delta x, \Delta p for the box problem and study the consequent modification of Heisenberg uncertainty relation due to the assumption of space-time lattice, in contrast to modifications suggested by other investigations such as \cite{Floratos}

    Similar works

    Full text

    thumbnail-image

    Available Versions