We present a systematic study of various statistical characteristics of
high-frequency returns from the foreign exchange market. This study is based on
six exchange rates forming two triangles: EUR-GBP-USD and GBP-CHF-JPY. It is
shown that the exchange rate return fluctuations for all the pairs considered
are well described by the nonextensive statistics in terms of q-Gaussians.
There exist some small quantitative variations in the nonextensivity
q-parameter values for different exchange rates and this can be related to the
importance of a given exchange rate in the world's currency trade. Temporal
correlations organize the series of returns such that they develop the
multifractal characteristics for all the exchange rates with a varying degree
of symmetry of the singularity spectrum f(alpha) however. The most symmetric
spectrum is identified for the GBP/USD. We also form time series of triangular
residual returns and find that the distributions of their fluctuations develop
disproportionately heavier tails as compared to small fluctuations which
excludes description in terms of q-Gaussians. The multifractal characteristics
for these residual returns reveal such anomalous properties like negative
singularity exponents and even negative singularity spectra. Such anomalous
multifractal measures have so far been considered in the literature in
connection with the diffusion limited aggregation and with turbulence. We find
that market inefficiency on short time scales leads to the occurrence of the
Epps effect on much longer time scales. Although the currency market is much
more liquid than the stock markets and it has much larger transaction
frequency, the building-up of correlations takes up to several hours - time
that does not differ much from what is observed in the stock markets. This may
suggest that non-synchronicity of transactions is not the unique source of the
observed effect