A new turbulent Taylor-Couette system consisting of two independently
rotating cylinders has been constructed. The gap between the cylinders has a
height of 0.927 m, an inner radius of 0.200 m, and a variable outer radius
(from 0.279 to 0.220 m). The maximum angular rotation rates of the inner and
outer cylinder are 20 and 10 Hz, respectively, resulting in Reynolds numbers up
to 3.4 x 10^6 with water as working fluid. With this Taylor-Couette system, the
parameter space (Re_i, Re_o, {\eta}) extends to (2.0 x 10^6, {\pm}1.4 x 10^6,
0.716-0.909). The system is equipped with bubble injectors, temperature
control, skin-friction drag sensors, and several local sensors for studying
turbulent single-phase and two-phase flows. Inner cylinder load cells detect
skin-friction drag via torque measurements. The clear acrylic outer cylinder
allows the dynamics of the liquid flow and the dispersed phase (bubbles,
particles, fibers, etc.) inside the gap to be investigated with specialized
local sensors and nonintrusive optical imaging techniques. The system allows
study of both Taylor-Couette flow in a high-Reynolds-number regime, and the
mechanisms behind skin-friction drag alterations due to bubble injection,
polymer injection, and surface hydrophobicity and roughness.Comment: 13 pages, 14 figure