research

Polynomial-time Computation of Exact Correlated Equilibrium in Compact Games

Abstract

In a landmark paper, Papadimitriou and Roughgarden described a polynomial-time algorithm ("Ellipsoid Against Hope") for computing sample correlated equilibria of concisely-represented games. Recently, Stein, Parrilo and Ozdaglar showed that this algorithm can fail to find an exact correlated equilibrium, but can be easily modified to efficiently compute approximate correlated equilibria. Currently, it remains unresolved whether the algorithm can be modified to compute an exact correlated equilibrium. We show that it can, presenting a variant of the Ellipsoid Against Hope algorithm that guarantees the polynomial-time identification of exact correlated equilibrium. Our new algorithm differs from the original primarily in its use of a separation oracle that produces cuts corresponding to pure-strategy profiles. As a result, we no longer face the numerical precision issues encountered by the original approach, and both the resulting algorithm and its analysis are considerably simplified. Our new separation oracle can be understood as a derandomization of Papadimitriou and Roughgarden's original separation oracle via the method of conditional probabilities. Also, the equilibria returned by our algorithm are distributions with polynomial-sized supports, which are simpler (in the sense of being representable in fewer bits) than the mixtures of product distributions produced previously; no tractable algorithm has previously been proposed for identifying such equilibria.Comment: 15 page

    Similar works

    Full text

    thumbnail-image

    Available Versions