We give a combinatorial classification for the class of postcritically fixed
Newton maps of polynomials as dynamical systems. This lays the foundation for
classification results of more general classes of Newton maps.
A fundamental ingredient is the proof that for every Newton map
(postcritically finite or not) every connected component of the basin of an
attracting fixed point can be connected to ∞ through a finite chain of
such components.Comment: 37 pages, 5 figures, published in Ergodic Theory and Dynamical
Systems (2018). This is the final author file before publication. Text
overlap with earlier arxiv file observed by arxiv system relates to an
earlier version that was erroneously uploaded separately. arXiv admin note:
text overlap with arXiv:math/070117