We review the problem of confounding in genetic association studies, which
arises principally because of population structure and cryptic relatedness.
Many treatments of the problem consider only a simple ``island'' model of
population structure. We take a broader approach, which views population
structure and cryptic relatedness as different aspects of a single confounder:
the unobserved pedigree defining the (often distant) relationships among the
study subjects. Kinship is therefore a central concept, and we review methods
of defining and estimating kinship coefficients, both pedigree-based and
marker-based. In this unified framework we review solutions to the problem of
population structure, including family-based study designs, genomic control,
structured association, regression control, principal components adjustment and
linear mixed models. The last solution makes the most explicit use of the
kinships among the study subjects, and has an established role in the analysis
of animal and plant breeding studies. Recent computational developments mean
that analyses of human genetic association data are beginning to benefit from
its powerful tests for association, which protect against population structure
and cryptic kinship, as well as intermediate levels of confounding by the
pedigree.Comment: Published in at http://dx.doi.org/10.1214/09-STS307 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org