We describe an efficient algorithm to compute forces in quantum Monte Carlo
using adjoint algorithmic differentiation. This allows us to apply the space
warp coordinate transformation in differential form, and compute all the 3M
force components of a system with M atoms with a computational effort
comparable with the one to obtain the total energy. Few examples illustrating
the method for an electronic system containing several water molecules are
presented. With the present technique, the calculation of finite-temperature
thermodynamic properties of materials with quantum Monte Carlo will be feasible
in the near future.Comment: 32 pages, 4 figure, to appear in The Journal of Chemical Physic