'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
For Electric Vehicles (EV), the charger is one of the
main technical and economical weaknesses. This paper focuses on
an original electric drive [1]-[3] dedicated to the vehicle traction
and configurable as a battery charger without need of additional
components. This cheap solution can outfit either electric or
plug-in hybrid automotive vehicles, without needing additional
mass and volume dedicated to the charger. Moreover, it allows a
high charging power, for short duration charge cycles. However,
this solution needs specific cares concerning the electrical
machine control. This paper deals with the control of this drive
[1], focusing on traction mode. In introduction, a review is done
about topologies of combined on-board chargers. Then, the
studied topology is introduced; using a 3-phase brushless
machine supplied with a 6-leg Voltage Source Inverter (VSI). A
model for its control is defined in the generalized Concordia
frame, considering the traction mode. Then, an analysis of this
model is established using a multimachine theory and a graphical
formalism (the Energetic Macroscopic Representation denoted
EMR). Using EMR, a description of energy flows shows specific
control constraints. Indeed, numerical simulations illustrate the
perturbations on the currents and the torque when controlling
the machine with standard control methodologies. An improved
control, deduced from the previous analysis, shows good
performances, strongly reducing currents and torque ripples.Fui8 funding within the SOFRACI projec