research

Electromagnetic energy within a magnetic infinite cylinder and scattering properties for oblique incidence

Abstract

In this work we analytically calculate the time-averaged electromagnetic energy stored inside a nondispersive magnetic isotropic cylinder which is obliquely irradiated by an electromagnetic plane wave. An expression for the optical-absorption efficiency in terms of the magnetic internal coefficients is also obtained. In the low absorption limit, we derive a relation between the normalized internal energy and the optical-absorption efficiency which is not affected by the magnetism and the incidence angle. This mentioned relation, indeed, seems to be independent on the shape of the scatterer. This universal aspect of the internal energy is connected to the transport velocity and consequently to the diffusion coefficient in the multiple scattering regime. Magnetism favors high internal energy for low size parameter cylinders, which leads to a low diffusion coefficient for electromagnetic propagation in 2D random media.Comment: 10 pages and 6 figure

    Similar works