GRAFTING POLY(N-ISOPROPYL ACRYLAMIDE) FROM POLY(VINYLIDENE FLUORIDE) MIROFILTRATION, MEMBRANES VIA DIRECT SURFACE-INITIATED, ATOM TRANSFER RADICAL POLYMERIZATION, AND TEMPERATURE SENSITIVITY

Abstract

Well-defined poly(N-isopropyl acrylamide) (PNIPAAm) brushes on commercial hydrophobic poly(vinylidene fluoride) (PVDF) microfiltration membrane surfaces were prepared, via direct atom transfer radical polymerization (ATRP) with the secondary fluorinated site of PVDF as initiator and water as solvent at 80°C. The effect of solvents on the ATRP was studied in detail. The water as reaction solvent was in favor of surface-initiated ATRP of N-isopropyl acrylamide (NIPAAm) from secondary fluoride of PVDF membranes. The chemical composition and structure of the modified PVDF membrane surfaces were determined by attenuated total reflectance (ATR) Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface and cross-section morphology of membranes were studied by scanning electron microscopy (SEM). The pore sizes of the pristine PVDF membrane and the PNIPAAm-grafted PVDF membranes were measured using micro-image analysis and process software. The introduction of the well-defined PNIPAAm on the PVDF membrane gave rise to hydrophilicity. Water contact angles of PVDF membranes reduced after the surface grafting of PNIPAAm. Water fluxes and protein solution permeation experiments revealed that the PNIPAAm-grafted PVDF membranes exhibited temperature-responsive permeability. The unique microstructure of PNIPAAm brushes facilitated hydrophilicity below the lower critical solution temperature.Poly(vinylidene fluoride), membrane, ATRP, temperature sensitivity

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 14/01/2014