Classical peaks over threshold analysis is widely used for statistical
modeling of sample extremes, and can be supplemented by a model for the sizes
of clusters of exceedances. Under mild conditions a compound Poisson process
model allows the estimation of the marginal distribution of threshold
exceedances and of the mean cluster size, but requires the choice of a
threshold and of a run parameter, K, that determines how exceedances are
declustered. We extend a class of estimators of the reciprocal mean cluster
size, known as the extremal index, establish consistency and asymptotic
normality, and use the compound Poisson process to derive misspecification
tests of model validity and of the choice of run parameter and threshold.
Simulated examples and real data on temperatures and rainfall illustrate the
ideas, both for estimating the extremal index in nonstandard situations and for
assessing the validity of extremal models.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS292 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org