research

Automatic grid construction for few-body quantum mechanical calculations

Abstract

An algorithm for generating optimal nonuniform grids for solving the two-body Schr\"odinger equation is developed and implemented. The shape of the grid is optimized to accurately reproduce the low-energy part of the spectrum of the Schr\"odinger operator. Grids constructed this way are applicable to more complex few-body systems where the number of grid points is a critical limitation to numerical accuracy. The utility of the grid generation for improving few-body calculations is illustrated through an application to bound states of He trimers

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019