research

Electric Field Effect in CO Adsorption on the (6,0) Zigzag Single-walled Aluminum Nitride Nanotube: an Ideal Method for CO Adsorption

Abstract

The behavior of the monoxide carbon (CO) adsorbed on the external surface of H-capped (6,0) zigzag single-walled aluminum nitride nanotube was studied under the parallel and transverse electric fields with strengths 0-140 Γ— 10-4 a.u. by using density functional calculations. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using the Gaussian 03 suite of programs. The binding energies obtained from these calculations at different applied parallel and transverse electric field strengths indicate that with increasing parallel electric field intensity, the binding energy values are increased, especially in the higher parallel field strength, whereas the BE values for the applied transverse electric field show a significant reverse trend. Results of this study indicate that with increasing parallel electric field intensity the pristine AlNNT can be used as CO storage and the parallel electric field effect is an ideal method for adsorption, storage, and fabrication of CO sensors. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3518

    Similar works