In conditions associated with high serum iodothyronine sulfate
concentrations, e.g. during fetal development, desulfation of these
conjugates may be important in the regulation of thyroid hormone
homeostasis. However, little is known about which sulfatases are involved
in this process. Therefore, we investigated the hydrolysis of
iodothyronine sulfates by homogenates of V79 cells expressing the human
arylsulfatases A (ARSA), B (ARSB), or C (ARSC; steroid sulfatase), as well
as tissue fractions of human and rat liver and placenta. We found that
only the microsomal fraction from liver and placenta hydrolyzed
iodothyronine sulfates. Among the recombinant enzymes only the endoplasmic
reticulum-associated ARSC showed activity toward iodothyronine sulfates;
the soluble lysosomal ARSA and ARSB were inactive. Recombinant ARSC as
well as human placenta microsomes hydrolyzed iodothyronine sulfates with a
substrate preference for 3,3'-diiodothyronine sulfate (3,3'-T(2)S)
approximately T(3) sulfate (T(3)S) >> rT(3)S approximately T(4)S, whereas
human and rat liver microsomes showed a preference for 3,3'-T(2)S > T(3)S
>> rT(3)S approximately T(4)S. ARSC and the tissue microsomal sulfatases
were all characterized by high apparent K(m) values (>50 microM) for
3,3'-T(2)S and T(3)S. Iodothyronine sulfatase activity determined using
3,3'-T(2)S as a substrate was much higher in human liver microsomes than
in human placenta microsomes, although ARSC is expressed at higher levels
in human placenta than in human liver. The ratio of estrone sulfate to
T(2)S hydrolysis in human liver microsomes (0.2) differed largely from
that in ARSC homogenate (80) and human placenta microsomes (150). These
results suggest that ARSC accounts for the relatively low iodothyronine
sulfatase activity of human placenta, and that additional arylsulfatase(s)
contributes to the high iodothyronine sulfatase activity in human liver.
Further research is needed to identify these iodothyronine sulfatases, and
to study the physiological importance of the reversible sulfation of
iodothyronines in thyroid hormone metabolism