A reasonable representation of large scale structure, in a closed universe so
large it's nearly flat, can be developed by extending the holographic principle
and assuming the bits of information describing the distribution of matter
density in the universe remain in thermal equilibrium with the cosmic microwave
background radiation. The analysis identifies three levels of self-similar
large scale structure, corresponding to superclusters, galaxies, and star
clusters, between today's observable universe and stellar systems. The
self-similarity arises because, according to the virial theorem, the average
gravitational potential energy per unit volume in each structural level is the
same and depends only on the gravitational constant. The analysis indicates
stellar systems first formed at z\approx62, consistent with the findings of
Naoz et al, and self-similar large scale structures began to appear at redshift
z\approx4. It outlines general features of development of self-similar large
scale structures at redshift z<4. The analysis is consistent with observations
for angular momentum of large scale structures as a function of mass, and
average speed of substructures within large scale structures. The analysis also
indicates relaxation times for star clusters are generally less than the age of
the universe and relaxation times for more massive structures are greater than
the age of the universe.Comment: Further clarification of assumptions underlying the analysi