This paper describes a framework for flexible multiple hypothesis testing of
autoregressive time series. The modeling approach is Bayesian, though a blend
of frequentist and Bayesian reasoning is used to evaluate procedures.
Nonparametric characterizations of both the null and alternative hypotheses
will be shown to be the key robustification step necessary to ensure reasonable
Type-I error performance. The methodology is applied to part of a large
database containing up to 50 years of corporate performance statistics on
24,157 publicly traded American companies, where the primary goal of the
analysis is to flag companies whose historical performance is significantly
different from that expected due to chance.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS252 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org