research

Connectivity in Sub-Poisson Networks

Abstract

We consider a class of point processes (pp), which we call {\em sub-Poisson}; these are pp that can be directionally-convexly (dcxdcx) dominated by some Poisson pp. The dcxdcx order has already been shown useful in comparing various point process characteristics, including Ripley's and correlation functions as well as shot-noise fields generated by pp, indicating in particular that smaller in the dcxdcx order processes exhibit more regularity (less clustering, less voids) in the repartition of their points. Using these results, in this paper we study the impact of the dcxdcx ordering of pp on the properties of two continuum percolation models, which have been proposed in the literature to address macroscopic connectivity properties of large wireless networks. As the first main result of this paper, we extend the classical result on the existence of phase transition in the percolation of the Gilbert's graph (called also the Boolean model), generated by a homogeneous Poisson pp, to the class of homogeneous sub-Poisson pp. We also extend a recent result of the same nature for the SINR graph, to sub-Poisson pp. Finally, as examples we show that the so-called perturbed lattices are sub-Poisson. More generally, perturbed lattices provide some spectrum of models that ranges from periodic grids, usually considered in cellular network context, to Poisson ad-hoc networks, and to various more clustered pp including some doubly stochastic Poisson ones.Comment: 8 pages, 10 figures, to appear in Proc. of Allerton 2010. For an extended version see http://hal.inria.fr/inria-00497707 version

    Similar works