We study the redshift drift, i.e., the time derivative of the cosmological
redshift in the Lema\^itre-Tolman-Bondi (LTB) solution in which the observer is
assumed to be located at the symmetry center. This solution has often been
studied as an anti-Copernican universe model to explain the acceleration of
cosmic volume expansion without introducing the concept of dark energy. One of
decisive differences between LTB universe models and Copernican universe models
with dark energy is believed to be the redshift drift. The redshift drift is
negative in all known LTB universe models, whereas it is positive in the
redshift domain z≲2 in Copernican models with dark energy. However,
there have been no detailed studies on this subject. In the present paper, we
prove that the redshift drift of an off-center source is always negative in the
case of LTB void models. We also show that the redshift drift can be positive
with an extremely large hump-type inhomogeneity. Our results suggest that we
can determine whether we live near the center of a large void without dark
energy by observing the redshift drift.Comment: 16 pages, 2 figure