research

COEFFICIENT CONDITIONS FOR HARMONIC CLOSE-TO-CONVEX FUNCTIONS

Abstract

New sufficient conditions, concerned with the coefficients of harmonic functions f(z)=h(z)+g(z)ˉf(z)=h(z)+\bar{g(z)} in the open unit disk U\mathbb{U} normalized by f(0)=h(0)=h(0)1=0f(0)=h(0)=h'(0)-1=0, for f(z)f(z) to be harmonic close-to-convex functions are discussed. Furthermore, several illustrative examples and the image domains of harmonic close-to-convex functions satisfying the obtained conditions are enumerated.Comment: 11 pages, 6 figure

    Similar works