A new modified string-inspired modular invariant supergravity model is
proposed and is applied to realize the slow roll inflation in Einstein frame,
so that the model explains WMAP observations very well. Gravitino mass and
their production rate from scalar fields are estimated at certain values of
parameters in the model. Seven cases of parameter choices are discussed here,
among which some examples show the possibility of observation of gauginos by
LHC experiments, which will give some hints of identity of dark matters. The
reheating temperature, which is estimated by the stability condition of
Boltzmann equation by using the decay rates of the dilaton S into gauginos,
is lower than the mass of gravitino. Therefore no thermal reproduction of
gravitinos happens. The ratio between the scalar and tensor power spectrum is
predicted to be almost the same for the seven cases under study, and its value
r∼6.8×10−2 seems in the range possibly observed by the Planck
satellite soon. The plausible supergravity model of inflation, which will be
described here, will open the hope to construct a realistic theory of particles
and cosmology in this framework, including yet undetected objects.Comment: 12 pages, 4 figures, 2 table