research

Intestinal Immunity to the Commensal Bacterium Akkermansia muciniphila

Abstract

Intestinal immunity plays critical roles in maintaining host health. Despite the abundance of foreign antigens and activated lymphocytes in the intestine, only a few commensal bacteria that induce cognate adaptive immune responses during homeostasis have been identified. In this dissertation, I reveal that Akkermansia muciniphila, an intestinal bacterium associated with beneficial effects on host metabolism and cancer immunotherapy, induces cognate T-dependent immunoglobulin G1 (IgG1) and IgA antibody responses and antigen-specific T cell responses during homeostasis. In contrast to the select few examples of previously characterized mucosal responses to commensal bacteria, T cell responses to A. muciniphila are limited to T follicular helper cells in the Peyer’s patches in a gnotobiotic setting, without appreciable induction of other T helper fates or migration to the lamina propria. However, A. muciniphila-specific responses are context-dependent, and adopt other T helper fates in the setting of a conventional microbiota. These findings suggest that contextual signals influence T cell immunity to the microbiota and modulate host immune function during homeostasis. Interestingly, T cells specific to A. muciniphila expand dramatically in a novel (but still uncharacterized) genetic mouse model of intestinal inflammation, suggesting that this bacterium may become a major mucosal antigen when homeostasis is disrupted. If so, T cell immunity to A. muciniphila may play critical roles during infection and inflammatory bowel diseases

    Similar works