CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Evolutionary genetics of birds IV rates of protein divergence in waterfowl (Anatidae)
Authors
JC Avise
JC Patton
Publication date
1 January 1986
Publisher
eScholarship, University of California
Abstract
An electrophoretic comparison of proteins in 26 species of waterfowl (Anatidae), representing two major subfamilies and six subfamilial tribes, led to the following major conclusions: (1) the genetic data, analyzed phenetically and cladistically, generally support traditional concepts of evolutionary relationships, although some areas of disagreement are apparent; (2) species and genera within Anatidae exhibit smaller genetic distances at protein-coding loci than do most non-avian vertebrates of equivalent taxonomic rank; (3) the conservative pattern of protein differentiation in Anatidae parallels patterns previously reported in Passeriforme birds. If previous taxonomic assignments and ages of anatid fossils are reliable, it would appear that the conservative levels of protein divergence among living species may not be due to recent age of the family, but rather to a several-fold deceleration in rate of protein evolution relative to non-avian vertebrates. Since it now appears quite possible that homologous proteins can evolve at different rates in different phylads, molecular-based conclusions about absolute divergence times for species with a poor fossil record should remain appropriately reserved. However, the recognition and study of the phenomenon of apparent heterogeneity in rates of protein divergence across phylads may eventually enhance our understanding of molecular and organismal evolution. © 1986 Dr W. Junk Publishers
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Sustaining member
eScholarship - University of California
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:escholarship.org:ark:/1303...
Last time updated on 25/12/2021