We study the precession of accretion disks in the context of gamma-ray burst
inner engines. Our aim is to quantitatively estimate the characteristics of
gravitational waves produced by the precession of the transient accretion disk
in gamma-ray bursts. We evaluate the possible periods of disk precession caused
by the Lense-Thirring effect using an accretion disk model that allows for
neutrino cooling. Assuming jet ejection perpendicular to the disk plane and a
typical intrinsic time-dependence for the burst, we find gamma-ray light curves
that have a temporal microstructure similar to that observed in some reported
events. The parameters obtained for the precession are then used to evaluate
the production of gravitational waves. We find that the precession of accretion
disks of outer radius smaller than 108 cm and accretion rates above 1 solar
mass per second could be detected by Advanced LIGO if they occur at distances
of less than 100 Mpc. We conclude that the precession of a neutrino-cooled
accretion disk in long gamma-ray bursts can be probed by gravitational wave
astronomy. Precession of the disks in short gamma-ray events is undetectable
with the current technology.Comment: 5 pages, 5 figures, accepted for publication in A&