research

Femtoscopy and energy-momentum conservation effects in proton-proton collisions at 900 GeV in ALICE

Abstract

Two particle correlations are used to extract information about the characteristic size of the system for proton-proton collisions at 900 GeV measured by the ALICE (A Large Ion Collider experiment) detector at CERN. The correlation functions obtained show the expected Bose-Einstein effect for identical particles, but there are also long range correlations present that shift the baseline from the expected flat behavior. A possible source of these correlations is the conservation of energy and momentum, especially for small systems, where the energy available for particle production is limited. A new technique, first introduced by the STAR collaboration, of quantifying these long range correlations using energy-momentum conservation considerations is presented here. It is shown that the baseline of the two particle correlation function can be described using this technique.Comment: Hot Quarks 2010 conference proceedings, to appear in Journal of Physics: Conference Series (JPCS

    Similar works

    Full text

    thumbnail-image

    Available Versions