research

Falling Pitch Imitating Doppler Shift Facilitates Detection of Visual Motion in The Extreme-Periphery

Abstract

Previous studies demonstrated that concurrent auditory stimuli can bias visual motion perception in the periphery more than in the fovea (e.g., Takeshima & Gyoba, 2013), and auditory becomes crucial when reliability of vision is reduced (e.g., Schmiedchen et al., 2012). We investigated if auditory affects detecting extreme-peripheral visual motion from behind, which is possibly one of the most salient situations since visual ambiguity is very high and detecting such motion can be ecologically critical to survive. In the experiment, a sequence of three 204 ms dots (255 ms SOA) was presented in the extreme-periphery (individually set by the largest eccentricity with 75% detection); each dot was presented at 3 adjacent locations with 2° distance so as to have apparent motion forward, or at the same location. As auditory stimuli, we employed concurrent beep with falling pitch, which roughly imitated Doppler pitch shift for passing-by object. We employed concurrent beep with rising pitch as a control, in addition to another no sound control. The results showed the concurrent beep with falling pitch increased the hit rate for motion detection, relative to that with no sound and rising pitch beep. Underlying mechanism was discussed with signal detection analysis

    Similar works