The isotopic composition of zinc metal electrodeposited on a rotating disc electrode from a Zn-citrate aqueous solution was investigated as a function of overpotential (electrochemical driving force), temperature, and rotation rate. Zn metal was measured to be isotopically light with respect to Zn^(+2) in solution, with observed fractionations varying from Δ^(66/64)Z_(nmetal-aqueous) = −1.0‰ to −3.9‰. Fractionation varies continuously as a function of a dimensionless parameter described by the ratio of observed deposition rate to calculated mass-transport limiting rate, where larger fractionations are observed at lower deposition rates, lower temperature, and at faster electrode rotation rates. Thus, the large fractionation and its rate dependence is interpreted as a competition between the two kinetic processes with different effective activation energies: mass-transport-limited (diffusion limited) kinetics with a large activation energy, which creates small fractionations close to the predicted diffusive fractionation; and electrochemical deposition kinetics, with a smaller effective activation energy, which creates large fractionations at low deposition rates and high hydrodynamic fluxes of solute to the electrode. The results provide a framework for predicting isotope fractionation in processes controlled by two competing reactions with different kinetic isotope effects