Casting light on the architecture of crop yield

Abstract

Crop canopy architecture is a central component of yield. The arrangement of leaves in three-dimensional space defines the efficiency of absorption of radiation and its conversion into dry matter at the canopy level. The description of architecture is normally associated with light since the optimal distribution of light is associated with that of other essential components such as nitrogen and pigments. However, architecture has been influenced by a number of other unrelated processes through breeding and selection that may have acted independently or even against light use efficiency. This review attempts to provide a broad view and interpretation of canopy architectural properties and the factors affecting crop architecture starting with evolution, domestication, climatic conditions and cultivation patterns, predominantly focusing on field grown agricultural crops. Using examples of modelling with a virtual canopy, we will discuss how architectural traits affect light interception and photosynthesis. Finally, we will discuss the future of architectural research: the concept of the ideal plant type (the ideotype) and which features we can expect to see, as well as the social constraints that may govern future crop architecture

    Similar works