Recently in \cite{Dvu3} it was shown that if a pseudo effect algebra
satisfies a kind of the Riesz Decomposition Property ((RDP) for short), then
its state space is either empty or a nonempty simplex. This will allow us to
prove a Yosida-Hewitt type and a Lebesgue type decomposition for measures on
pseudo effect algebra with (RDP). The simplex structure of the state space will
entail not only the existence of such a decomposition but also its uniqueness