We applied two methods of "blind" spectral decomposition (MILCA and SNICA) to
quantitative and qualitative analysis of UV absorption spectra of several
non-trivial mixture types. Both methods use the concept of statistical
independence and aim at the reconstruction of minimally dependent components
from a linear mixture. We examined mixtures of major ecotoxicants (aromatic and
polyaromatic hydrocarbons), amino acids and complex mixtures of vitamins in a
veterinary drug. Both MICLA and SNICA were able to recover concentrations and
individual spectra with minimal errors comparable with instrumental noise. In
most cases their performance was similar to or better than that of other
chemometric methods such as MCR-ALS, SIMPLISMA, RADICAL, JADE and FastICA.
These results suggest that the ICA methods used in this study are suitable for
real life applications. Data used in this paper along with simple matlab codes
to reproduce paper figures can be found at
http://www.klab.caltech.edu/~kraskov/MILCA/spectraComment: 22 pages, 4 tables, 6 figure