research

On generalized Frame-Stewart numbers

Abstract

For the multi-peg Tower of Hanoi problem with k4k \geqslant 4 pegs, so far the best solution is obtained by the Stewart's algorithm based on the the following recurrence relation: S_k(n)=min_1tn{2S_k(nt)+S_k1(t)}\mathrm{S}\_k(n)=\min\_{1 \leqslant t \leqslant n} \left\{2 \cdot \mathrm{S}\_k(n-t) + \mathrm{S}\_{k-1}(t)\right\}, S_3(n)=2n1\mathrm{S}\_3(n) = 2^n -- 1. In this paper, we generalize this recurrence relation to G_k(n)=min_1tn{p_kG_k(nt)+q_kG_k1(t)}\mathrm{G}\_k(n) = \min\_{1\leqslant t\leqslant n}\left\{ p\_k\cdot \mathrm{G}\_k(n-t) + q\_k\cdot \mathrm{G}\_{k-1}(t) \right\}, G_3(n)=p_3G_3(n1)+q_3\mathrm{G}\_3(n) = p\_3\cdot \mathrm{G}\_3(n-1) + q\_3, for two sequences of arbitrary positive integers (p_i)_i3\left(p\_i\right)\_{i \geqslant 3} and (q_i)_i3\left(q\_i\right)\_{i \geqslant 3} and we show that the sequence of differences (G_k(n)G_k(n1))_n1\left(\mathrm{G}\_k(n)- \mathrm{G}\_k(n-1)\right)\_{n \geqslant 1} consists of numbers of the form (_i=3kq_i)(_i=3kp_iα_i)\left(\prod\_{i=3}^{k}q\_i\right) \cdot \left(\prod\_{i=3}^{k}{p\_i}^{\alpha\_i}\right), with α_i0\alpha\_i\geqslant 0 for all ii, arranged in nondecreasing order. We also apply this result to analyze recurrence relations for the Tower of Hanoi problems on several graphs.Comment: 13 pages ; 3 figure

    Similar works