research

A new look at nonnegativity on closed sets and polynomial optimization

Abstract

We first show that a continuous function f is nonnegative on a closed set K⊆RnK\subseteq R^n if and only if (countably many) moment matrices of some signed measure dν=fdμd\nu =fd\mu with support equal to K, are all positive semidefinite (if KK is compact μ\mu is an arbitrary finite Borel measure with support equal to K. In particular, we obtain a convergent explicit hierarchy of semidefinite (outer) approximations with {\it no} lifting, of the cone of nonnegative polynomials of degree at most dd. Wen used in polynomial optimization on certain simple closed sets \K (like e.g., the whole space Rn\R^n, the positive orthant, a box, a simplex, or the vertices of the hypercube), it provides a nonincreasing sequence of upper bounds which converges to the global minimum by solving a hierarchy of semidefinite programs with only one variable. This convergent sequence of upper bounds complements the convergent sequence of lower bounds obtained by solving a hierarchy of semidefinite relaxations

    Similar works