The Effect of Temperature and Active layer thickness on the Performance of CH3NH3PbI3 Perovskite Solar Cell: A Numerical Simulation Approach.

Abstract

In this work, General-purpose Photovoltaic Device Model (GPVDM) software was used to investigate the performance of a perovskite solar cell with CH3NH3PbI3 as its active layer. GPVDM is a free general-purpose tool for simulation of light harvesting devices. The model solves both electrons and holes drift-diffusion, and carrier continuity equations in position space to describe the movement of charge within the device. The model also solves Poisson's equation to calculate the internal electrostatic potential. Recombination and carrier trapping are described within the model using a Shockley-Read-Hall (SRH) formalism, the distribution of trap states can be arbitrarily defined. The software gives an output that contains the Current-Voltage (I-V) characteristic curves. A study into the effect of active layer thickness and temperature on the performance of the solar cell device was carried out. The optimal active layer thickness was found to be 3 x 10-7m. When the thickness exceeds 3 x 10-7 m, then the efficiency drops. At the optimal thickness of 3 x 10-7m, the devices were found to have power conversion efficiency up to 14.7%. On other hand the fill factor (FF) decreases as the thickness increases. The FF is highest at active layer thickness of 1 x 10-7m. The effect of device temperature also studied and the optimal working temperature was found to be 300 K, where power conversion efficiency and FF are 15.4 % and 0.76 respectively

    Similar works