LOAD-DEFLECTION BEHAVIOR OF RATTAN CHAIR SEATS

Abstract

The static and fatigue performances of seat foundations of natural rattan chairs subjected to vertical loads were investigated.  Static performance evaluation results indicate that rattan strip weaving patterns have significant effects on the vertical load carrying capacity and stiffness performance of chair seat foundations.  Herringbone and grid pattern woven seat foundations had significantly higher vertical load carrying capacity than those made with a square-corner pattern.  Square-corner pattern seat foundations yielded a softer sitting surface than herringbone and grid patterns.  Herringbone and grid pattern seat foundations can provide firmer sitting feel and good deep down support for heavier sitters.  The Burger model could be used to describe the force-deformation-time behavior of a rattan woven seat foundation subjected to vertical cyclic loading

    Similar works